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Application of Arakawals Energy-conserving Layer Model
to Operational Numerical Weather Prediction

In his general circulation modelling, Arakawa has extended Lorenz's

1960 analysis of energy-conserving systems to allow for variable pressure

at the bottom of the atmosphere in a "sigma" system.1 This note analyzes

this energy-conserving sigma system with respect to its application to

prediction with real data.

Two questions arise immediately in an operational context which

are less obvious when modelling the general circulation:

(1) If the input data is the field of geopotential, what pressure

level in the atmosphere has a geopotential equal to that associated

with a given model layer? Also, how accurate are the potential tempera-

tures deduced from input geopotentials via the hydrostatic difference

relations of the model?

(2) Horizontal truncation effects will corrupt computations of

the horizontal pressure force in a sigma system. How can these errors

be made small when, in the presence of orography, the initial geopotential

data is taken from the real atmosphere (where horizontal truncation does

not exist)?

The analysis is presented in four sections, In section 1, the

continuous equations are analyzed using an arbitrary monotonic function

Lorenz, E., 1960: Energy and numerical weather prediction. Tellus,
12, 364-373.
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of pressure F4) to construct a generalized sigma system. This is

X~~~

explored because functions of + such as - and MA- have the

property that sigma surfaces defined by them can become isobaric more

rapidly with height than does the usual - system. A second concept

is introduced in section 1, that of an adiabatic reference atmosphere.

This allows the geopotential to be expressed as its deviation from this

reference atmosphere, and offers the possibility of significantly reducing

the orographic truncation effect mentioned in question 2 above. It is

shown in section 1 that a well-defined energy integral exists when this

device is used.

Arakawats vertical finite-difference scheme is introduced in

section 2. Special attention is given to an accurate assignment of

+ for each layer. This is accomplished by asking the model's initial

data to duplicate the atmosphere with respect to the enthalpy and to the

potential temperature represented in each layer. It results in a different

definition of . than that used by Arakawa.

Section 3 contains experimental tests of question 1 above. These

show satisfactory values of deduced · in all cases except for Arakawa's

original choice of f . A quantitative justification is also made in

this section for identifying the velocity and geopotential assigned to

each layer with that measured in the atmosphere at the value of ~

assigned to that layer.

Section 4 contains computations of the fictitious horizontal pressure

force introduced from horizontal truncation effects in a sigma system
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when the true geopotential is a function of pressure only, This is a

test of answersto question 2 above. Best results are obtained when the

adiabatic reference atmosphere is combined with F:t . For the extreme

case of a surface height-difference of 1800 meters in 200 km, these

"best results" correspond to a (vertically-averaged) fictitious horizontal

acceleration of 3.6 m sec- 1 day-1 , or a (vertically-averaged) fictitious

geostrophic wind of 0.4 m sec- 1, or a gravity-wave oscillation of surface

pressure with an amplitude of 0.1 mb. These appear to be about 10 percent

of the same errors in a simplified NMC model with the same number of

vertical levels, but using the total geopotential. The more exotic

choices of F-4 or F do better than F=r in the upper layers

but considerably worse in the lower layers.



1. The differential equations

~ = pressure - 100 cb

< = surface value of

r? = constant P at top of model

PFi)= function of + used as unnormalized
vertical coordinate (F must, of course, be monotonic)

M: fib- 5r -fast fi,)

The normalized

1 at 4y :

vertical coordinate, 0- , ranges from 0 at the ground to

F-F7o-=- I-
H

F = F -j-H el-s)r

The following notation is also needed

-1,= i4 !P= 1H-i E
dF I dP

W e- w= W

w a - -V5bi~-12 V

4.

(1.1)

(1.2)

(1.3)

(1.4)
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where V is the horizontal velocity. /L is a generalized counterpart

to the term " 9+/9o0- " used at NMC.

Partial derivatives transform as follows, where F =- XJ t

unsubscripted derivatives are at constant or , and f is

I . 0 

,D+ 

0

any quantity.

(A f) 4- I I-&-)+ 4704
00@-L PF i f

Using the relation

H ( -) H W

we first derive the continuity equation:

(1.7)

Or, since

(1.,8)
- p (-0 4b-S F 05

(H(- C- 2 
. - ' 

(1.5)

(1.6)

'D1 + 

::~~~ re ef

-12 'r )t 

0 r co-( t Ad Pt + ,U 
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we could also write (1.7) as

(1.9)

Integration of (1.7) or (1.9) from 0- = 0 to 1, with Cf3 = O

boundaries, produces the familiar surface pressure tendency eq

at these

auation:

(1.10)

The flux form of the prediction equationSis

(1.7) with f and using the relation

94 _ f # O# + H d 14e
dF d of

obtained by multiplying

(1.11)

This flux form is

_1.f'-~ .V" U ~ -f D -~ :- 42

0f-
(1.12)

The momentum equations for u and v (the components of the velocity,

V ) take the form

a0 0 ( 19 +) + V U
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eo0

g'~' tra.p, ~- ~,- ~,B

-- fit+) - ~ LF(, d-) O'K 4 -2,7~ fom x (1.13)

where M represents rotational and curvature effects, and X represents

friction.; The equation for aV- is similar. From these, one readily

derives the following kinetic energy equation, in which

IL - 2 (1.14)

=~_- ~ -+~ @ ~ ~~ UX ~(1.15)

Note that + in (1,13) and (1.15) can be the actual geopotential or it

can be the deviation of the actual geopotential from any standard distri-

bution ¢ (Ji) ,since only 4 enters into d v/Id .

The potential temperature equation is

/Vf 2 2 . R/C (1.16)

Here we note that C1.16) is unchanged if we replace & by 6 minus a

constant. The corresponding enthalpy equation is obtained by multiplying



(1.16) by C¢ -P' and defining

7-- 0

'9,~r)-
e9q

2 t- -l

_ _ _ a -C = -,, A t e ir

Adding (1.15) and (1.18) we get

t 4ktf 7) - ' j a) , V\ O e -i Tt4)

0- cv (ke f CTt4) 
,,~~ ~ ~(1.19)+ aI -+.

The square bracket in (1.19) vanishes if we recognize the hydrostatic

relation in the form

-p

edT, A ' & it (1.20)He = -e not h -f

Here we note that if 8 is replaced by
A

/-=O"- 

= 0 /z- q40 -C.

-7~~~~~~~I

8.

(1.17)

(1.18)

(6 &Z cv j 

(1.21)

v. 61 /�s � T)

C�, O fLu 'D � 4-4, 1
dt - -0 Cr d-6

f ~ -= I-OU 5fl O)
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so that

d-~~~~~~ + t ~(1.22)

(1.20) becomes identically valid in the primed variables also:

ft99r~~~~~~ = : up6 d(1.23)

Under these conditions-i.e., the choice of (1.21) as a reference atmosphere

-the square bracket in (1.19) still vanishes, and f and & , whenever

they appear in (1.13)-(1.20), can be replaced by z and 9 if at the

same time we also replace 7 by :

T Y T'- r'- aTj9 7- Tr(e
(1.24)

The integral energy equation is obtained by integrating (1,19).

i

a,;,:j4 r' , e ,'/.Area

(1.25)

= f ,,. 'I~o, SAX * g)crea

If we have used the total and -, q~0= in the second integral

is the actual ground geopotential. Since it is independent of time, the

second integral becomes the well-known expression
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(1.26)

! / If instead we have used $ and T in place of and 7T ,

depends on time. The surface integral in (1.25) becomes

( Jdff#rea m -:= -

- by ff Joke t + e P(lK)j~ Area (1.27)

if P[ is defined as

c/P

(1.28)

We therefore have a completely closed energy integral even when we use

To examine this further, let horizontal averages and deviations there-

from be denoted by f) and f , i.e., f = < > t f . We

first choose the constants and e in (1.21) to fit observed data

as follows

( {7 = t > = average (initial) 4 at r

4' ef.,>) = 4 = average surface geopotential

This gives
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el t- > T J

(1.29)

' =5 ZO -P + d Qr> (I kz

- bPo) _ pi

P in (1.28) so that P (c-. >) )= 0:

P(rb) -= ,+I ( 4- 

This gives

< P q)> =
OI-+k)

_ <
(Iid<)

<') P -, (P?'Xt> r-- )
,aK X

XFI 4-

+ - PI ., >
(1.30)

The area integral of t4 is independent of time, according to

the continuity equation (1.9). Thus, if ¾ = C + t

c~~~~~p~~~k

Expanding this, with

Lit t$j] X
-- PC*)

We choose

+ ()(frJl Q)

& =- rF {) ,> - e qd=c I 

�� 60 =.

's!" ]Xh 'a3
t>J~~~~~~~ s* -ay < Pt?,)> ='

[ <k da r> '-bw ~/% v *_'~ >- P tI
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we get

2 ~ z/PJ;.>-_ X

e SPA>
(~ rx v:>

(1.31)

Thus, the added term 9 /' P (J)> / t 

equation if we use 4 ', N' , T in place of

(approximately) like the time rate of change of

Secondly, we may note that the combined surface

written (approximately) as

appearing in the

6 , O , -

a positive definite

energy integral may

'7 __
4/P t -

To the

due to

extent that the major contribution to 4

orography we will have

°-- t'OCG
0O:z a o

where c~ is a typical surface specific volume. The square bracket in

(1.32) will then tend to vanish since R e h> a $ is only

slightly higher than a typical value of c .( 9 will be somewhat

greater than <OL .) In other words, the use of 4 , / with /

will result in an energy integral in which most of the contribution of

4= ~S /l > is cancelled out.

energy

behaves

quantity.

be

(1.32)

is

0-- +
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2. The vertical difference equations

In this section, we formulate the vertical finite differencing so

as to conserve energy, following in general the technique devised by

Arakawa.1 An important addition to this technique will be introduced,

however, in the choice of ri = assigned to each layer. This

addition, which appears in equation (2.26) below, is identical with a

suggestion made by J. Brown.2 The vertical structure is depicted on

the following diagram:

A4 4 i .4A
lic 4%:,4t, .21 = 

I X ' ..... -la .I"" c e.
"O~ [ i-

Af.
ja 3

Itf

t77

4v 4 .4

,., Ot i i*

44
: :,

A= IAII * 9' a 

1 A. Arakawa, 1972: Design of the UCLA General Circulation Model,
Tech. Rpt. no. 7, Dept. of Meteorology, UCLA.

2 J. Brown, 1974: On vertical differencing in the a-system, Office
Note 92, NMC. See his equation (26).

e
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Variables at the "interfaces" are denoted by carats. These include the

coordinate variable itself,

i) : E a A fb (2.1)

and

F F, -)2.2)

adz& ~~ r-~~ (1- 9 ) X A ~(2.3)

where

dl~ -- dF F F (2.4)he~d

and

(2.5)

A~~

The interface variables and , except in the case of 

are only auxiliary variables which are useful in carrying out the details

of the Arakawa formulation.



0
15.

The basic dependent variables, V , and J are defined

withnthe "layer," but F and 0 in the layer are never defined. To_ _ _ _- - L_ _-_ -
simplify notation, we will also introduce

ws A

4 ~~~~~~~A ~~(2.6)

It h J.

A specific formula for 4 will be needed. Although defined by (1.4)

as 14 (d*/F) , a more useful expression will be derived soon. A
-A

precise form for 4k is needed only if it is necessary to convert between

EV and Wb in (2.,6). This conversion appears to be needed only if

the prediction equations are not put in flux form.

The Arakawa procedure is designed to arrive at layered equations

which hay e energy properties equivalent to the continuous system. In

the Arakawa finite-difference formulation, we also end up with deriving

the form of the hydrostatic relation which is necessary for energy

conservation.

The derivation which follows is written in terms of the total 

r and 6 . However, the equations are equally valid for o , r
/

and d if these are defined as deviations from the adiabatic reference

atmosphere (1.21).

The continuity equation (1.7) is first expressed as

A A ^ X ) a(

CW -W 04 414 U (2.7)M. k la4- 
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We sum this from 4- f 4 k , and note that for

-P (d) QF;
dF 0 1 (2.8)

and that W , M4j

4 =4-p i:

and . K+ are zero. The result is

i IL 

In order to have this agree with the usual formula for 4 /9 

we must require that

A

This provides the definition of .i

to

(2.10)

. Symbolically this is equivalent

Ob. 

4- A
-A or (2.11)

'1 . ' h, l

However, we do not use this to determine the value of ' (e.g., iT

in the layer; condition (2.26) below will be used instead. [If this is

surprising, note that (2.11) is useless to determine in the special

case of F = , since d 1 /JF is then not a function of p .]

)

f - .,gaO1 rty

-_ ,L*

= 4i r-y

Ad k A-J, tt

Ah a d9) 

-h -&�'
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The flux form of the prediction equations is written for a layer

variable ( i = . or V ) as

Attit~i)+ + Al c4 i fit (2.12)

is as yet undefined. However, Arakawa shows in the case F =

that if we choose to conserve the function G'(+) , the choiceiO X... ) (

-f_

(I A_. d r (2.13)

will result in an equation conserving . The same formula (2,13) can

be shown to hold in this generalized a-system. It results in the equation

(2.14)

with

Wewiproablyakefhis o n with ih(2.15)

We will probably make use of this only with 6 + , in which

i a (I is, ) , Ga {h 4Sts ~~~~~(2,16)
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The horizontal momentum equations are written in flux form. For

example, (1.13) is expressed as

V ( I A '1 ', )
I'4n Ia I, _ t4h (

-dr) "* + 4 1h Ar 4,1h ''h 

-i
with a similar equation for /Vl and with ,& defined by (2.16).~,, eCozscered -

4 > will be 4e4ied later, but 4% equals the ground geopotential.

Dot multiplication of these with Y , followed by use of (2.10)

and (2.8), results in the following kinetic energy equation (A

= Y 7)f

j7'AA,,o)+ go UA(Jac+ 4)

D _~~ I (4 11 I 1Idl 14A ~6'

I U "Ja X | ( # 4h +
-A -

= hk A. + -L I 
(2.18)

The potential temperature equation (1.16) is written in flux form 85

AA ('+' I *+ T Wk&.)=

We multiply this by C IJ and define

Ts 11j1 &1 -

(2,17)

(2.19)

(2.20)

0

-- t
9 't

C-- 1 f4 Ah )- ( h-+1 h., it

t+4 ) - "(jaS 'V4-i, OA,
;ks, ~~~~i )]%{ j)

+ ~ (a I+ h

V Uh 
9 h 

./L (Lt 

14) (+4 ) (k14 , Oh -O1.
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The result is a finite-difference equivalent of the enthalpy equation

(1.18):

P~t 4t)V. u6T4 + 5 (4A 9- 

;tla .* I1 AAt4zr-,I n
(2.21)

is as yet undefined, as is ~t Cio4t of o/ O ( ./ 6

We add this to the kinetic energy equation (2.18) and use (2.8):

at Ctk , T )] It-_ z '9A.,-,I 
IA t

-4 ' + hk -t Ci' -,wit4 sX1 )|-5 - kt+ C), YkX PUkI AVIk ) ~ 4 1 ~ ~

- f4~~~ f / 4 ~ ~ ~ \ ¶ 7~~ W

(2.22)

( 1 AH Vhi I

This equation is analogous to the continuous form (1.19) if on the right-

hand side the last two terms cancel for - aJ -.; 4 and the coefficients

of and

and km ,2 3,* K,.

for k.I , ,; ..... , '
vanish for respectively) b, C= ^Xu1,

Taking the latter two conditions, we have,

* c:AN9x (

-'h upii

r Ca#et,* %WP IAt A4 ) ~

t Ctb k & ( at V Y 11 )
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OAh OIL c ¢tzTi-8k,@ko

k~~~~ i T s (2.23)

which separate into

s +X-8 # ( lk:-t i) , h - 4,- - -, t(2.24a)

and

: h * k {t-ti)+i(tNN)i 
C(2.24b)

The combined energy equation now reduces to

+ t Y 114Y # 1I Jib Uh- { c- 

5/8&*Vb ) + (tiak ( tt tiV/t) C2.25)+~~~

4 C ( ot xv )l 4h. 7' ) _- {+o.h, )

We can no longer postpone a choice of / . (2,25) identifies the

enthalpy in the . layer as (- i T b . We can there-

fore arrange that our model have the same initial enthalpy (and therefore

total potential energy) as thte atmosphere hy equating, at tz O
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'A 4~~~

f'-k :qk ; : -
Ilk Sk { pj*X_4 ) =: fT J# S. JBT 1 f'observroJJ;

;1.4.t So A I

To obtain separate information about I and h in addition to their

product we may also ask that the integrals of ~ correspond in (2.19).

4 f 9 t (observed)

4

Recognizing that the pressure intervals are presumably close together,

we simply assume that 6 may be taken outside the integrals in both

of these equations whence

4
Ilk~ 11 ' i+

JlE -- _E_.~~~~~~~~~~~~~f

I

((initial) - 41* (06setre4)

An alternate assumption is to assume constant T instead of constant 

in the integrals. This yields

'Ak 4a34
I 1 1~~~

.r dp *ol$..,)Cinitial) - f ) f
A~~~~~b..

y'2.26)
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Other more complicated assumptions involving the variation of & or T

within the layers are conceivable, but (in order to be realistic) would

introduce into the above simple definition of j as a function of ,b

and 4jt a new dependence on t at adjacent layers, and would thereby

probably eliminate any possibility of cancelling the last two terms in

(2.25) for all distributions of . in his general circulation model

using F = , Arakawa simply puts ij - L t ) 7 
This is demonstrably a poor choice for real data; see the end of section 3.3

One final point before returning to (2.25) and (2.24) should be noted.

This is that although we have now defined lJk and we shall shortly

complete the hydrostatic system for determining values of A from known

values of and t , the values of T within the layer at which

| = k is still unresolved. This question becomes important when

initial input data are not in the form of layer integrals of 0 , but

consist instead--as is part of NMC practice-of -values in order that

geostrophic-like relations can be used in objective analysis. This point

will be discussed in section 3.

In order to return to (2,25) we invoke (2,8) in (2.26) to arrive at

- A(Ae. 2-Th i2.27)Ir, , ) 1T Oa
C2.27)
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The last two terms in (2.25) cancel if we require that, for k i ,

-N A -A rA
:,8-*4, ,,, 4 l o 4 A 6 r ~t- , 

41 +44 ) P. V~!'+O i Isk (i -C (2.28)

4+ is zero [see 23] and
4 K4.! is zero [see (2,3)] and

Al (d} 4
(4FI

do X 

Equation (2.28) therefore gives no information about

(2.29)

, but

we do identify I 1 Iwith the surface geopotential:

I g

[or +¢ 4 )- 4C#4) if we are usil

Summation of (2.28) from =I to 

an equation relating It and ; :

ng 4! in place of

followed by use of (2.24) produces

A [- ,)

ck
- 4 

I
i4k i4~

(2.30)

(2.31)

4 (f_ - )
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This plus the ( M I| ) equations (2,24a) gives K relations between

the L values of and the K values of once Sk has

been defined in (2.15).

The totality of hydrostatic considerations can be summarized as

follows:

-A ~ ~ ~a. Knowing 1 [predicted by (2.9)], F is determined by (2.2).

b. This determines a + f
c. J comes from (2.26)

d. Predicted values of enable to be determined

d
according to the choice for 9k made in (2.13).

e. If is being used, (2,31) determines Ax , since 

is the known surface value of geopotential, If 4 is being
A .

used, A = ~ ( $ ) is first determined from (2.2) and

used to compute ¢ ( +) in (1,21) or (1.29). is equal

to 4 - t ) . (2.31) then determines HI directly.

f. (2,24) enables

3}~~ ' K 3JA J1
(or A ' to be determined for i 2 ,
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3. Temperatures as given by known geopotentials

In numerical prediction as practiced as NMC, however, the initial

input data is primarily the geopotential distribution rather than (for

example) , plus a complete analysis of T 6P). Nonetheless, an

important part of the forecast itself is the temperature or potential

temperature. It is therefore a legitimate question to ask what values

of 9. are determined by the above equations. For example, given i

as input at -o , are the inferred 4L. reasonable, even at de= ?

To examine this we first define

q6 A

':t~ - + e -~+; ~ (I'~) :(3.1)

(3.2)

VA~~~~ (-Ag(7tt.. I) ,(F -IT,)
·~~~~~~

i,, -o ( ,A -4o)

and have the properties of potential temperatures at some

location between the and levels appearing in their definition.
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We specialize (2.16) now to

flu ~ ~ A 2 efd ,) ,-- K (3.3)

Equations (2.24a) and (2.31) then reduce to

aA a a 4 4. 7(3,4)

0 : 0^ _ 2 ts - hi & z ..-J A. ~~~~(3.5)

We note that identity of all d produces ~ for all A 

This is an exact solution of'the hydrostatic relation for an adiabatic

atmosphere if we identify #i in each-layer as the geopotential at the

pressure corresponding to iP This assumption is made from now on.

Its accuracy will be examined later [see equation (3,14)].

Equations (3.4) and (3.5) can be solved for 6 in terms of :

* 24k X

.:A

(3.6)

it 5l~z<-X-t)+yll-3}vR ,'
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for ~ = 2, - - - , K then follows from (3,5). [Note

that the proportionality of oh to ( ,.- ) reflects a

second-order truncation error in (3.6).]

As a numerical test of this system, the equations have been applied

to the following distribution:

~,~ l'lm~;l ty .-' lll~o°.§z z 2 7?-~3 t"-Z (--6. ~ *A (3.7)

Z -7 - 98

t - -= R'~ 7;.¥3++Z1 l(-&.q)'e3Z, (3.8)

These formulae duplicate reasonably well the usual standard atmosphere

up to - 0.1 (i.e., 100 cb). 4, and Or were set at 1 and

0.1, and CF for simplicity were set equal to 287 and 1000, and

the interval from A 0 to X Z- {,/)X was divided up into 10

equal increments in Z . This defines and i , and T

followed from (2,26). "Input"t values of i were then obtained by

applying (3,7) at -- C ) -) , and , is equal to (1110)

(.95) = 1054.5 m2 sec-2 ( Z -- -l o ). Computations of t
from (3.6) and (3.5) were made with - -, F and F-

These were compared with ' 9 true"--the values of ~ given by (3,8)

at 

Ia ,
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Table I. Excess Cx) of finite-difference 0 over true 0 for three choices
of F(p), for the NMC scheme, and for Arakawa's choice of wk.

Values of v (etc.) are also shown for the three revised Arakawa
schemes as is ek (true) for those three schemes.

:: a 0 ' k'

irk Ok (true) Tk Vk (F=p) Vk (F=i) Vk (F= -9n p)

1.O0 .968900

.936052 .906941

.876193 .848944

.820163 .794655

.767715 .743839

.718621 .696272

.672667 .651746

.629650 .610068

.589386 .571056

.551696 .534538

283.203
290.326
298.551
308.095
319.199
322.151
347.272
364.925
385.523
409.534

281.641
286.642
294.293
303.151
313.443
325.438
339.433
355.773
374.847
397.092

1.0
.092733

-.066367
.046945

-.032605
.022186

-.014469
.008939

-.004887
.002058

1.0

.088489
-. 060322
.040386

-.026559
.016977

-.010418

.005981
-.003087
.001158

1.0
.085916

-.056785
.036913

-.023537
.014598

-.008682
.004823

-.002379
.000900

x = be (model) e (true):

k (F=p) (F=)-- (F= -kn p) (NMC) (Arakawa rk)

1 -.149 -.362 -.463 .056 -6.866
2 -.096 .117 .218 .064 7.921
3 -.195 -.408 -.509 .084 -10.887
4 -.149 .064 .165 .092 10.535

5 -.259 -.472 -.573 .110 -10.933
6 -.215 -.002 .099 .131 10.448

7 -.342 -.555 -.656 .140 -10.994
8 -.309 -.096 .005 .182 10.347
9 -.445 -.658 -.883 .204 -11.106
10 -.428 -.215 -.114 .233 10.217

k

1

2

3

4

5

6

7

8

9

10

9
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The results are summarized in Table I., with ih ' 9 - 9 true.

All results for these three choices of F are satisfactory although

F=+ has less of the slight alternating character in ,Y apparent in

F= f or F-1p. In all three t" F "cases, Af was a degree or so

greater than t 1 . This shows that (3.6) amounts to a recognition that

the mean potential temperature ~ from the ground ( Jh ) to j

is less than l , i.e., (3.6) produces an extrapolation below im of

the stable ~ distribution characteristic of (3,8).

The next to the last column in Table II, labelled xNMC, is based on the

type of hydrostatic equation employed in the current NMC modelA with 

located at the interfaces. In terms of our present notation, this is

-% -:

(3.9)
q _Irw.B 1 ,4

At C TAh- OX+&4, )

and xXMC is this value of b minus '9 from (3.8) where'k7, , ', ) -x (3.10)

is used in accordance with NMC practice. These results are slightly

better than for the revised Arakawa system, which shows a small tendency

to oscillate. However, all four methods give satisfactory results.

:
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A much poorer field of deduced O appears if we instead of (2q26)

follow Arakawats choice of r (he uses F= ):

t~~IT l '/At) (3.11)

This gives

9,li X fi& 1 
_ _{t-,aa) (3.12)

and, in place of (2.28),

( 4 C1 19 , ) ,hi 4v (3,13)

When carried through the steps analogous to (2.31) and (31,l)-(3.6) and

A
applied to the above test case [using the simple choice (3,3) for 6 k ]

the inferred values result in the last column of k shown in

Table I. [The NMC model and the original Arakawa model have, of course,

their own values of Otre (not shown) since they use different values of

"I than do the first three tests.] A large oscillation is present--

large enough in fact to produce alternating changes in sign of a- Oh, .

This choice of Ilk is clearly unsatisfactory.

A final point concerns the "location" of the i -values--i.e., at

what value of + are they located? The implicit assumption we have made so

*O
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far is to identify them with the ~ levels, An alternate approach,

however, would be to follow through to completion the view introduced

earlier of having 99NO- equal to zero in each layer, which led to

(2.26). This would lead to the relation - , -¢b o -n.

- W k-t- A)J where - b ( ) . Comparing this to (2.24),

with t(- (Sk -'A ) leads to the conclusion that F -8 = , A.,

for = 2, , K . The uniform value of fl -' can be fixed

'% -~-Iby equating (IT,- ) , t - (~,-4, ) , to (t, ) ,.e.,
by assuming &B to in the lowest layer. The result is

rk ITN (IT, o) t (3.14)

O

For the three cases F-'fA andf 1in Table I., . - J has the

values .000155, .000132 and .000121 corresponding to a fraction .0050, .0042

and .0039 of (t,-fT,) . This would correspond to a negligible change in 

of C X 10o , or about 4 meters in height. We therefore conclude

that it is sufficiently accurate to assume

t- 4(lr k) (3.15)

when input data consists of 4 values rather than the temperature integrals

in (2.26). As discussed below, this also serves to identify the levels at

which V is analyzed at -o , and will enable forecast values of Ik

_Ob
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and X to be converted to pressure surfaces for presentation

of output. [In fact, if i -values are to be used as input data instead

of the ~ integrals in (2.26), a decision about the pressure levels

corresponding to them must be made before d is defined. Since (3.14)

is useless until all / C e OiL -i ) are known, an approximation

like (3,1 ) is unavoidable.]

The point may be raised that the original definition of AA in the

continuity equation assumed that Vh was the mass-representative velocity

in that layer, since (2.9) and (2.10) give

._ _ (- V , {& ) v.
a -2: :7 

K~~~at~~~a

In other words, we implicitly assumed then that was defined at.~~~~
whereas we now have and V defined at

t

rj,± l r -' -,IC ) :

However, this difference is small, Expanding L we find

- r L a8x) ApitL it A. 
which, in the case of equal intervals k is approximately equal to

This has a value of-.0016 in the 10-level model tested here.(Z)

This has a value of-.0016 in the 10-level model tested here. 

0
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4. The Horizontal pressure force

We examine here the artificial value of 7p introduced by the

sigma system when 4 is only a function of pressure, using again the

test distribution ( ):

4bag'sect) ~ u/ofj6s.Vt z [7*jY3 + Z (-(.Vf tZ).J (4.1)

We consider two columns, A and B, located at different values of x (say),

and having different values of surface pressure:

Point A: z, I = o 4 - IO ,S

(4.2)

Point B: -'of x,--0 1 3 i, (46.2727

This corresponds to a difference in surface elevation of 1791.15 meters,

and furnishes a significant test of this effect. A "mid-point" 0 is

defined as having the average surface pressure of A and B:

Point 0: if - 0, A'7 (4.3)

Column 0 will be considered both as the mid-point between A and B-at which

we will compute the finite-difference equivalent of (a 4/1 )j -and

it will also be used to define the sigma-levels and the adiabatic reference

atmosphere.

A 10-layer model is used again, with Or 0 .1 - -i .! , with

interfaces located at equal intervals in Z at point 0. (This interval
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is small enough that is small enough that . at column A differs by at most 0.8 percent from

surface pressure ft at column B.) The first five columns in Table II.

show the vertical distribution of interface pressure at column 0, while

the last three columns show the values of CY at these 11 levels corre-

sponding to three choices for Ft*) in the relation - )=F-F)/( -_F )

The reference adiabatic atmospheric used data from column 0 in the formula

(1.29) in that >, r , 4> and Z4r> in (1.29) are identified

~~~~~~~1with the values of ) , and at column :with the values of .1 $(tand , , andat column 0:

(4.4)

&-z 3.q9.1?3Y79

Table II. Choice of a-levels for three choices of F(p).

F=p F=r F=-n p
A A jA *A~ ) A A A

~k kZk Pk Pk- Pk+1 k k k k

1 .1053605 .9 .177533 .970214 0 0 0
2 .3250830 .7224670 .142512 .910921 .221916 .130659 0.1
3 .5448054 .5799546 .114401 .855252 .400057 .253333 0.2
4 .7645279 .4655537 .091835 .802949 .543058 .368589 0.3
5 .9842503 .3737193 .073719 .753912 .657851 .476648 0.4
6 1.2039728 .3000000 .059178 .707838 .750000 .578178 0.5
7 1.4236953 .2408225 .047504 .664580 .823972 .673502 0.6
8 1.6434177 .1933182 .038133 .623965 .883352 .763002 0.7
9 1.8631402 .1551846 .030612 .585833 .931019 .847031 0.8
10(K) 2.0828626 .1245731 .024573 .550030 .969284 .925927 0.9
11 2.3025851 .1000000 .516416 1.000000 1.000000 1.0

In the Arakawa scheme, the pressure force is

4~~~~~~~~~~~~~~~
Ek Otf+)et [P-*,i +1 li 4Akti,<-

2W
01

(4.5)

0 tM7 d; -L) - 32B YS.093q rl.7



.

35.

The NMC scheme in our notation is

(fy a I 4-'/ ) + C~k .(ku
kradv,# a~~~2

For comparison with the Arakawa form, we put (4.6) into "flux form" by

multiplying it with ( K k ) and using the definition r *

l-~)~ -h). (We use a simple NMC-like model, without the "tropopause"

surface.) The result is

(4.7)

+ t 4+ ~ ~ ~~~~I P~tt, {i-,)+^(,-t* )ti2w 0 f kQa

Following accepted practice, the curly brackets in (4.5) and (4.7) are

taken as the average of their values at the two points (in our case A

and B) that are used to evaluate . Let us define

aL -dei
as the apparent difference in geopotential along a pressure surface from

A to B in the sigma system when ~ = ~/) . Equations (4.5) and (4.7)

both have the same form now,l

~ ) IA

1~~~~~~~~~+7
1 The following exact equivalent of (4,5) could also have been used for

comparison with (4.6):

_k 'iAL.

(4.6)
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Term I is the change in (Au R ) from point A to B and term II is

an averaged coefficient times the change in H (or + ) from point A

to point B.1

Table III. shows the results for three versions of the revised

Arakawa scheme and for the NMC scheme, using the total geopotential (4.1)

as input. [In order to duplicate operational practice, O in (4,5)

and in (4.7) was computed from the a according to the hydrostatic

equation for each model, as was done in the single column computations

of section 3.] The general nature of the results is similar, in fact

those for F-+ are very similar to the NMC scheme. The results for F=R'

and - i are negative instead of the generally positive values found

for = + and for NMC. Compared to those for F'+ , their magnitude

is definitely larger in the lower part of the atmosphere, but does tend

to be smaller in the upper layers (presumably because there is less

variation of pressure along a sigma surface in these coordinates).

1 Some complicated numerical evaluations have been reported by J. Gary

(Estimation of truncation error in transformed coordinate, primitive

equation atmospheric models. J. Atmos. Sci., 30, 223-233, 1973). The

computations presented-here differ from his in concentrating on the most

important case 4 #) , in using expressions appropriate to the flux

form of the horizontal equations of-motion, in using coefficients of the

last terms in (4.5) and (4.7) which are exactly consistent with the finite-

difference hydrostatic equations of the model, in using the more accurate

two-point averaged values of these coefficients, and finally, in considering

a reference atmosphere which is completely compatible with the entire set

of equations.



Table III. "Artificial" values of (k- Pk+l)A~ using

of (4.1) in three versions of the revised

total geopotential

Arakawa system

(F=p, u and -Zn p) and in the NMC system. k-values define

sigma levels from Table II. Units are m2 sec- 2.

NMC F=p

kII (Pk Pk+l I III (Pk- Pk+l) A

1 2200.117 -2185.345 14.772 2216.059 -2198.740 17.319
2 1001.643 -990.674 10.969 1014.570 -1003.743 10.827
3 204.609 -196.594 8.015 215.294 -205.408 9.886
4 -309.651 315.319 5.668 -300,678 307.422 6.744
5 -626.900 630.748 3.848 -619.234 624.548 5.314
6 -809.050 811.367 2.317 -802.346 805.743 3.396
7 -900.094 901.255 1.161 -894.105 896.579 2.474
8 -931.503 931.735 0.232 -926.035 927.391 1.356
9 -925.426 924.850 -0.576 -920.322 920.964 0.642
10 -896.984 895.958 -1,026 -892.115 892.253 0.138

45.380 58.096

F=r F= -Qn p

k I 0 ~II (Pk- Pk+l)L I (k k+l)"

1 2034.144 -2065.811 -31.667 1926.002 -1988.717 -62.715
2 737.104 -759.866 -22.762 588.494 -625.783 -37.289
3 -49.963 39.455 -10.508 -171.996 156.771 -15.225
4 -493.505 486.056 -7.449 -563.003 554.075 -8.928
5 -712.452 709.777 -2.675 -724.292 721.846 -2.446
6 -787.356 785.468 -1.888 -748,790 747.315 -1.475
7 -774.508 774.230 -0.278 -697.283 697.267 -0.016
8 -711.723 711.354 -0.369 -608.185 608.061 -0.124
9 -623.607 623.714 0,107 -505.391 505.771 0.380
10 -526.540 526.500 -0.040 -403.661 403.520 -0.141

-77.529 -127.979

0
37.
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The same computations have been made for the three versions of the

revised Arakawa model, using the difference between the geopotential (4.1)

and the adiabatic reference atmosphere (4.4). These results are in Table IV.

They show a reduction in OtX +it,,, )i4 in all three cases from those of

Table III., but most satisfactorily so in the case F + . An oscillation

is present again in all three cases with minimum values at even A .

Table IV. also contains values of d , obtained from dividing

(>i +, ) by the (b - values listed for column 0 in Table II.

Suppose columns A and B are separated by 200 km. (This corresponds to the

large ground slope on the Pacific Coast.) A value of of 10 m2 sec-2

corresponds then to an acceleration of 5 x 10-5 m sec-2Av 4.3 m sec- 1 day-1

or to a geostrophic wind of 0.5 m sec- 1 in middle latitudes. This value

of 6 seems small enough to be tolerated, and the results for F- in

Table IV. are therefore acceptable. However, the results for F 17 and

=-> in Table IV. are too large, as are all of those in Table III.

I



39.

Table IV. "Artificial" values of (Pk- Pk+l)Ap and A% using

deviation of geopotential in (4.1) for three versions

of the revised Arakawa system. Units are m2 sec-2.

F=p

k I II (k Pk+l)A ¢ A +

1 -399.783 400.093 0.310 1.7
2 -149.280 148.758 -0.522 -3.7
3 -1.307 2.319 1.012 8.8
4 77.938 -77.412 0.526 5.7
5 111.844 -110.796 1.048 14.2
6 116.770 -116.030 0.740 12.5
7 103.524 -102.667 0.857 18.0
8 79.588 -79.112 0.476 12.5
9 49.815 -49.481 0.334 10.9
10 17.276 -17.211 0.065 2.6

4.846

F=T F= -in p

I II (Pk- Pk+l)AO A I II (Pk Pk+l ) 

1 -382.066 396.121 14.055 79.2 -371.509 393.289 21.780 122.7
2 -117.477 122.088 4.611 32.4 -100.238 106.756 6.518 45.7
3 25.874 -19.371 6.503 56.8 36.308 -30.042 6.266 54.8
4 89.654 -88.382 1.272 13.9 92.769 -96.985 -4.216 -45.9
5 108.749 -106.836 1.913 25.8 104.381 -102.657 1.724 23.4
6 101.811 -101.535 0.276 4.7 92.780 -92.783 -0.003 -0.1
7 81.916 -81.305 0.611 12.9 71.319 -70.832 0.487 10.3
8 57.171 -57.105 0.066 1.7 47.626 -47.663 -0.037 -1.0
9 32.358 -32.206 0.152 5.0 25.814 -25.694 0.120 3.9
10 10.173 -10.169 0.004 0.2 7.802 -7.799 0.003 0.1

29.463 32.642
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The time derivative of the surface pressure tendency is

z -A .2. z 4b 4 ,)9
-~ A

If the atmosphere is resting at t z , this is equal to

,, es 7

Suppose conditions at columns A and B are repeated in f , and that the

motion erroneously created at £ - acts subsequently like a gravity wave

with effective phase speed C. The amplitude t of the resulting

oscillation in surface pressure is then
K

> of at E lt i eAO )4 d#,:~~~2 L,~ohf ,- k',;, J
CZ Act,

Values of these sums are tabulated under the columns in Tables III. and

IV. In many of the cases, the values of 64 are fairly uniform with Ai
suggesting that a large value of C' 200 or 300 m sec- 1 is appropriate.

If we take C 250 m sec 1, we get , about 0.1 mb for the best case

A~
( :+ in Table IV.) and Gi about 2 mb for the worst case (FL-- in

Table III.).


